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A 

ABSTRACT 
An adaptive antenna array processing technique that allows a spatial signal field to be 

characterized in terms of multiple wavefronts in a background of spatially uncorrelated 
noise is presented. In particular, the array processor would provide simultaneous, real-time, 
multisource positional location. The technique is interpreted in terms of an eigenvector de- 
composition of the single-frequency, spatial-correlation matrix of the data received at the 
spatial array of sensors. A relationship is established between a multiple wavefront signal 
field and the eigenvectors of the corresponding single-frequency, sensor-to-sensor, correlation 
matrix. Because of the orthogonality of the correlation matrix eigenvectors, the processor 
gives an interference-rejection capability that is useful when locating weak signal sources in 
the presence of strong interfering sources. Finally, an iterative-adaptive algorithm for the 
real-time implementation of the array processor is specified. 
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SOURCE LOCATION WITH 
AN ADAPTIVE ANTENNA ARRAY 

INTRODUCTION 

Current interest in the processing of signals received by antenna 
arrays has led to a variety of detection and estimation criteria for 
optimum array signal processing.1*4   In accordance with these criteria, 
several methods for the adaptive realization of the array processing 
filters have been considered. See, for example.  References 5 and 6. 

The optimum spatial processing for detecting a distant energy 
source in a multiple signal field would require one optimum array 
processor for each possible direction of source location.  Thus,  if an 
omnidirectional searching capability is required, the system complex- 
ity would increase in proportion to both the required search area and 
the desired spatial resolution. An exception to this  omnidirectional, 
multibeam array receiver approach that limits the system complex- 
ity is discussed by Hyde.7   For his technique, the number of sensors 
(K),  rather than the number of search directions, places the primary 
upper limit on the array processor complexity. 

The maximum-likelihood estimation of the location of a signal 
source with a spatial array of sensors has been considered by several 
authors.4,8,9   Gaarder 10 bypassed the 3-dimensional search require- 
ments of a maximum-likelihood,  single-source,   location-estimation 
scheme.  He considered easily computed estimates based on an eigen- 
vector decomposition of the sensor-to-sensor wavefront, time-delay 
correlation matrix. 

The approach to multiple-source location taken here is, first, to 
present an analysis that permits the decomposition of the signal field 
into orthogonal,  eigenvector components. Second,   this  signal field 
decomposition is related to a physical model for a multiple-source 
signal field.   Third,  the utility of this orthogonal  representation is 
examined.  Finally, an iterative adaptive  realization for the array 
processor is described. 



A SPATIAL SIGNAL FIELD WITH RESOLVABLE 
WAVEFRONTS 

Consider the K-sensor adaptive array and the M-source signal 
field shown in Fig. 1. The maximum number of sources (M) is limited 
to the number of sensors (K). This is because K is the minimum num- 
ber of resolvable wavefronts that can form a basis for  the  K-dimen- 
sional signal field.   The  summation of the   M   wavefronts and an 
uncorrelated noise component result in a single frequency complex 
waveform (X^f), i = 1,  2,  ..., K) at each of the sensor outputs.  The 
ith sensor output is filtered by the adaptively controlled filter Hjff) 
and summed with the other filter outputs to form the array processor 
output (Y(f)).  The following vector notation is introduced: Let 

11,(0 

X- 

Xtf) ' 
x2(f) 

.X,c(f). 

and      H 

H2(f) 

HK(n 

so that the array processor output is given by 
Y(0-HTX, 

-XTH. 

(1),(2) 

(3) 
(4) 

t H/nx/o (5) 

The single frequency, spatial data vector (X) can be represented 
in terms of the superposition of K wavefronts and an uncorrelated 
noise component as 

i-i 

(n i,(n*N(o . (6) 

where 5,(0 ia the complex envelope for the ith wavefront. The vector 

eip(-2vfri2) 
I 

f,,0._ 

ewpi-lmtr^) 

(7) 
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Fig. 1.   K-Sensor Adaptive Array in an M-S.iurce Signal Field 

is the so-called directional delay vector for the ith wavefrsmt.   Note 
that some of the wavefront complex envelopes (S, (f)) can be zero. 
Define 

N(n- 

N,(n 

N2(n 

N-(n 

(8) 



as the vector of uncorrelated noise components at each of the K sen- 
sors. The delay r in Eq. (7) is the time required for the ith wave- 
front to travel to the jth sensor from some aibitrary but fixed spatial 
reference point. 

The single frequencycorrelation matrix for the received data vec- 
tor is given by 

r -xx'T . 

-   Y^ S,(0 £,(£)+N(f)  PP  SJ(f)E((f)+U(0 
•T 

i.j-i 

S,(f) s|(f) £,(£) E/f)'T + N(f)N(f),T 

(9) 

(10) 

(H) 

where the overbar represents the time-averaged value.   In Eq. (11), 
the ith wavefront signal envelope S (f) is assumed to be uncorrelated 
with the components in the noise vector  N(f).   Now the matrix I is 
defined with the directional delay vector  £,(f) as the ith column. Also, 
the matrix  P is de   ned with ijth element, 

P,,-5,(0 5,(0 , (12) 

which is the correlation of the complex envelopes of the ith and jth 
wavefrents. If this notation is employed, Eq. (11) can be rewritten as 

ll-fPE*T ♦ P.I 
where 

N(ON(0,T p.« 

(13) 

(14) 

The term   "Pe "  is the uncorrelated noise power at each of the K sen« 
sors and I   is a KXK identity matrix. 

A statement of wavefront spatial  re solvability equivalent to the 
Rayleigh resolution criterion is desired. "•u    In terms of notation pre- 
viously developed defining the matrix 

I -[£,(0.1,(0. .   EK(0]  . 

the  K wavefrents are spatially resolvable if 

|,TI-I 

(15) 

(16) 



In fact, it is  sufficient for  the largest off-diagonal term in E*TE to 
have a maximum absolute value equal to or less than the inverse of the 
number of sensors in the array; i.e., 

•bs [("■).] 
1. i-j 
<l/K.i-j (17) 

for large K. 

The following orthogonal forms for the correlation matrices R and 
are introduced. The spatial correlation matrix R can be written as 

R-MXM*T 

t M.M;T 

(18) 

(19) 

where   X j is the ith eigenvalue of R, and M, is the corresponding ei- 
genvector. Similarly,  the complex envelope correlation matrix P can 
be written as _      .     -T P.C8CT. (20) 

trf (2i) 
where   bi  and C^ are  the corresponding eigenvalue and eigenvector 
of P.   In Eqs.  (18) and (20),   the matrices X and ft are diagonal ma- 
trices of eigenvalues for the correlation matrices R and P ,   respec- 
tively.  In addition,  X and I are assumed to have the  eigenvalues of 
R and P written in monotonically decreasing order on the diagonal. The 
matrices M and C are the so-called modal matrices of R and P with 
columns that are the eigenvectors of R and P . These modal matrices 
have the unitary matrix properties 

M TM-I «ad 

C*TC-I, (23) 

with the result that 
M     -M*1    and 

(24) 

C'T - C"    . 
(25) 



Thus,  by using Eq.  (20) in Eq. (13), the correlation matrix R can be 
written as 

R = EC8C'TE*T+Ppl   . (26) 

^ • T    • T 
Premultiplicationandpostmultiplication of Eq. (26) by C    E    and EC, 

respectively,   yield the diagonal form 

C'T E,TREC-8 + Pol , (27) 

where the identities of Eqs.  (16) and (23) have been utilized. Similarly, 
as in Eq. (18), premultiplication and postmultiplication of R by M*   and 
M.   respectively,   yield the diagonal form 

M,TRM-A. (28) 

Since the matrices X and 8 represent unique diagonalizations of the 
matrices R and P,  respectively, Eqs. (27) and (28) can be equated with 
the results 

X- 6+P  I  mad 
(29) 

M = EC. (30) 

Equations (29) and (30) relate the eigenvalues and eigenvectors of 
the correlation matrix R to the parameters of the spatial signal field, 
which is given in terms of the wavefront direction matrix E and the 
complex envelope correlation matrix P.   There are three points  that 
are worthy of consideration in the context of the results given by Eqs. 
(29) and (30): 

a. Insight into the bearing response of a conventional array 
beam-formation system can be obtained; 

b. The directional and power-level information for a single 
resolvable wavefront appears in one eigenvector and eigenvalue, re- 
spectively; and 

c. A near-optimum adaptive array processing scheme for 
source localization can be postulated that exploits the wavefront in- 
formation "clustering" effect alluded to in (b), above. 

These three topics are now considered in deta\. 
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CONVENTIONAL ARRAY BEAM FORMATION 

A conventional single frequency, time delay-and-sum array beam- 
steering system is shown in Fig, 2.  The time-delay vector for beam 
steering the array to the bearing angle 6 is specified by 

D(0) 
D2(t,e) 

,DKl{,e) 

eipH2irfr2(fl)) 

eip(-j2»rfrK((?)) 

(31) 

(32) 
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Fig. 2.   Single Frequency Tine Delaymd-Sum Array Hram Strering 



The time delay r, (6) is the delay inserted at the Uh sensor to steer 
a beam from the array to a plane wave coming from direction 0. There- 
fore,  the beam-steered output (Y(f, 9)) can be specified by 

Y(f.Ö) - DT(tf>X. (33) 

The bearing response   B(f, 6) for the array that is beam steered at 
angle 6  is given by 

•a#) - \Y(I.*)\2   . W 

•D1(e)XX'JD\0) . (35) 

-pT(tf> 8p'(*) . (36) 

.pT(*)MU(l,TD'(«) . (37) 

-DT(») VA.M.II^D'C») .                                    (38) 
i   i 

-^AJP^MJ2   . (39) 
1-1 

B(f,9)   . V *i ■,('.*> • 

where 

(40) 

B/l,») - I^C^M,!' (41) 

is defined herein as the ith eigenvector bearing response."   The  re- 
sponse   BJf, 9) is  interpreted with  reference to Fig.    1  by letting 
U - M*   and observing that  Bff, 9)  is the array processor output 
power for a unit power source,  which is generating a plane wave at 
the array from bearing angle 9.   Thus, the conventional beam forma- 
tion bearing response has been decomposed into the sum of K eigen- 
vector bearing responses,  each weighted by the appropriate eigen- 
value. 



The importance of Eq. (40) in obtaining B(f, 6) is that the complete 
bearing reeponee can be obtained directly from a measurement of the 
eigenvalues and vector« of the correlation matrix R. This approach is 
in contrast to sampling the spatial field with beams that have finite 
spatial beamwidth and beam-to-beam spacing. However, this inter- 
pretation is only one rationale for decomposing  B(£, 9).   The real im- 
portance of Eq. (40) lies in the actual distribution of spatial-field 
information in the K,  andB^f, 9) terms.  This effect is considered 
in detail in the following section. 

SPATIAL SIGNAL FIELD DESCRIPTION 
LY EIGENVECTORS 

For K resolvable signal wavefronts with statistically uncorrelated 
complex envelopes, the wavefront correlation matrix P is diagonal. 
For this case, it follows from Eqs. (29) and (30) that 

* - K P * P J   Md • (42) 

M ■ " . (43) 
with the ith eigenvalue given by 

A, - KP,, ♦ P#   . <**) 

where X, > \j > ..... >K. The corresponding eigenvector is 

Mt - fi.O . («) 

where P,,   is the power in the ith signal wavefront and E((f) is  the 
wavefront delay direction vector (i ■ 1, 2,...,  K).  Thus, the conven- 
tional bearing response according to Eq. (40) is 

■(If) -^<Kp„ ♦P.) IB'C^IiWl' . (46) 

where the ith eigenvector bearing response,  Eq. (41),  is given by 

Bia.9) - lpT(») 1,(0 1' . (47) 

Equation (47) has an absolute maximum at 0,,   where 6, is the 
bearing angle for a farfield point signal source. The importance of this 
result is that the bearing response  B (f, 0) is invariant with  respect 
to the signal-to-noise power ratio (S/N) for the jth wavefront. 



(S/N),   -P^/P.    . (48) 

where j ■ 1, 2 K, and, in fact, depends only on the directional 
properties of the ith wavefront.  Therefore, in theory at least, the lo- 
calization of the ith source by utilizing  B.Cf, 9) is independent of rela- 
tive signal levels. Alternatively, locating the ith source by means of 
Eq.  (47) allows effective discrimination against ail other spatially re- 
solvable wavefronts regardless of the power of that wavefront. This 
effect is illustrated in the following example: A line array with 24 sen- 
sors is considered.   The  sensors are spaced one  half a wavelength 
(K/2) apart with respect to two random, uncorrelated signal sources 
at frequency f.   Figure 3 illustrates the array and signal-field param- 
eters. Figures 4 and 5 show the normalized angular bearing response 
(Eq.  (47)) for eigenvectors  M, ■ £ i(f) and ^2 * E^f),  respectively. 
It is important that, in view of the fact that source S2 is 20 dB below 
source SI in S/N,  the bearing response for ^2, when compared with 
that for id,, is in no way degraded with respect to locating source S2. 
Moreover, it is easy to observe a notch in the M2 response sidelobe 
region in the vicinity of Si.  This is because M2  performs spatial fil- 
tering on the received data vector X,  which rejects the Si wavefront 
contained in the orthogonal eigenvector   M,.    This effect occurs 
because   E]    E. / 0; i.e.,  the sources are not ideally resolvable ac- 
cording to Eq. (16). However, Eq. (17) is not violated for this example, 
and the orthogonality of eigenvectors M|  and Mj containing source 
locations 6 ,  and e2  provides spatial sidelobe discrimination. 

Figure 6 shows the conventional bearing response (Eq. (40)) trun- 
cated after the first two terms; i.e., 

%(.9) -  >    A, Bt(f.«) . (49) " * t 
Clearly, high level source Si has suppressed the spatial recognition 
of source S2 owing to the relative difference in S/N. In fact, if the 
conventional bearing response were computed according to Eq. (40), 
source S2 would be subordinated to a -20 dB bearing-response level 
with respect to Si. This degree of suppression of the 52 bearing-re- 
sponse level is in contrast to the -13 dB suppression shown in Fig. 6 
and the complete independence of 6, via B,(f, 9) on relative source 
S/N illustrated in Fig.  5. 

10 
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Fig. 3.   A  K=24 Senior Line Array in • Soacial Signal Field Con listing 
of Two Uncorrelaced Source« at Frequency f 

For correlated wavefront complex envelopes,  Eq.  (30) indicates 
that directional information on all targets may appear in any given 
eigenvector, as  determined by the modal matrix C.   It is  shown by 
means of an example in the following section that the signal-related 
information in a highly correlated multisource environment appears 
in the first eigenvector. 

11 
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Fig. 6.   Two-Tenn Truacaced Approsiawtioa of die Conventional Bearing 
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ADAPTIVE REALIZATION FOR MULTIPLE SOURCE 
LOCATION ARRAY PROCESSOR 

In the previous section it was  shown that resolvable  multi-wave- 
front information appears in the eigenvalues and associated eigenvec- 
tors of the single frequency, sensor-to-sensor, array correlation ma- 
trix R. Applications of eigenvector analysis, in terms of the Karhunen- 
Ldeve expansion, to the analysis of random process sampled data are 
well known.14*17 In particular, Karhunen-Loeve expansions find utility 
in signal processing U'17>1S and in the slightly more general areas  of 
pattern recognition and dimensionality reduction. "•>«•>' 

To date,   the numerical techniques for determining eigenvalues and 
associated eigenvectors ol an estimated correlation matrix of observed 
random data have required a large computational storage area and 
have not been feasible in   real time.   Briefly,   existing techniques re- 
quire, first,  the  estimating of the covariance matrix of dimension 
(KXK) for K-dimensional vample vectors.   Generally,  these  estima- 

13 



tion procedures utilize a  "lagged-product" approach,   where time- 
delayed sample products are averaged to estimate the correlation 
elements of the matrix.   This method implicitly assumes  interval 
stationarity of the time-sampled data. Second, subsequent to the cor- 
relation matrix estimation, the computationally most expedient tech- 
niques utilize variations of Jacobi's method to compute eigenvalues 
and eigenvectors from the estimated matrix.,9>202> Even though such 
methods are recursive, considerable computer storage space, word 
handling, and computation time are required. 

The method discussed herein presents a numerical algorithm for 
eigenvalue-eigenvector estimation based on a constrained gradient 
search method.21,21 This technique has the following desirable features: 

a. Minimal storage requirements, proportional to (KXM), 
where K is the sample vector dimensionality and M is the number of 
eigenvalues (vectors) that are to be obtained. 

b. A potential for real-time operation. 

Basically, the constrained gradient search (CCS) algoritnm applied 
to eigenvalue (vector) estimation provides for a sequential estimation 
of eigenvalues and associated eigenvectors in order of decreasing 
eigenvalue magnitude.   A matrix form of the Hamiltonian criterion 
function that is amenable to maximization via gradient search and 
stochastic estimation is central to the development. 

Consider the Hermitian form 

P n -BIC-VMJIOö;  . (50) 

IIT£A,M(M;TB: . (SD 

VA, 1*111,1'. (52) 
i-i 

where it is recalled that R is the correlation matrixfor the input sam- 
pled data vector, which can be written as in Eq.  (19) to yield Eq.  (52). 
It can be  shown,26 providing that for   \l  > \2  >,..., > \%,   P,   is a 
maximum for   Hi ,   subject to the constraint 

14 



aTiC-iäii2 (53) 

-l ' (54) 

if H, = M* and P .   = X.^ That is. 

in.r-      -A, '55' 
for  Hj = Mj .   Thus, if the first (i-1) eigenvalues and corresponding 
eigenvectors of the correlation matrix R are available, the ith eigen- 
pair, K|  and M,, can be obtained by invoking Eq.  (55) and searching 
for an H,, which maximises  Pri . 

For the present application,   a numerical search for  H1 can be 
implemented. For this purpose, the method of undetermined Lagrange 
multipliers is utilised to obtain an orderly search procedure. See, for 
example. Reference 25, Chapter 13, and Reference 27. 

Suppose the sample vector 2&(n) ot the vector random process X in 
Eq.  (1) is available at time instant ta. If the value of the filter vector 
in Eq. (2) at ka it H ■ H^n),  then H^n) is to be selected in order to 
maximise 

v->-äi(-)[i - v SM.MHü:- W (56) 

at instant ta subject to the constraint 

li,«!1- 1 ■ (57) 

Application of the method of undetermined Lagrange multipliers 
stipulates that the Hamiltonian, 

V«> - p
ri("> ♦ Lll -\H^)\2]   . 

(58) 

must be an extremum with respect to H (n) as a necessary condition 
for maximising Pri (n), subject to the constraint of Eq. (57). In Eq. 
(58), L is the undetermined multiplier that is required for the mag- 
nitude constraint on H (n). Accordingly, the gradient of h (n), with 
respect to  H, (n),   is given by 

V        Mn)      4« -5^ KM*'*   - Ll| H%'v. 
■,(■1 

^["-S^H^-Lila:. 
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Solving Eq.  (59) at the zero gradient point yields 

[«-^^urlÄio-Ljirc). (60) 
which i 
(61) by 

s an eigenvalue 
(n) yields 

HT(»)   « 

matrix equation form. Premultiplication of Eq. 

V]A,M,I!*T    H;(.) -LHlWH^n) . 
)-l J 

-Lltt^.)!2 . 

-L ,   md 

-P?1(.) • 

(62) 

(63) 

(64) 

Thus, the undetermined Lagrange multiplier (L) is  in fact an eigen- 
value of the residue matrix 

T^i J     I-I 
Furthermore,  L is equal to V, , which is the maximum eigenvalue in 
Eq.  (65),  because Pyl (n) ■ L if being maximised. Therefore, the vec- 
tor  H( (n), which maximises  Pyi , is the eigenvector M,. 

Now an iterative filter adjustment algorithm for determining 
H^n) ■ M*   can be specified by using the method of steepest gradient 
ascent.22,2'  For this method, we adjust H, (n) according to 

U/s + D-JM«)*^«)   . (66) 

ere  ^(n)   is  an est 
by 
where  J.{n)   is  an estimate of the gradient V     h.(n)   that is given 

|||(a) 

2tm)-2 |«-V A.M.y;1 -t  iL'M . (67) 

j,(-) - 2 x(.) 3(.)*T - V A, ntf7 - L(.) J B;(.) . (68) 
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- 2   *(■) 2t(")'T a^) - Jj A| ^l^r H'(o) - L(n) Jj|(n) . (69) 

- 2    X(o) Y*(B) " 52 ^j M, «TiW - L(n) H*(n)     . (70) 

In Eq. (67), the estimates 

^-X(n)x'T(«)   «ad (71) 

t.Pr,(n). (72) 

IVjWl2 , (73) 

- lllT(n) XW I Z     (See Eq. (64).) (74) 

are utilised. The constant \i in Eq. (66) is a small positive quantity 
that controls the rate of convergence of Hi(n) to M* and the variance 
of the convergent solution. Finally, the filter-control algorithm, called 
the X, algorithm, given by Eqs, (66) and (70), specify the arrayproc- 
essor. Operationally, the processor would allow the filter vector to 
converge to Mi and then compute an angular bearing response accord- 
ing to Eq. (41). Either this bearing response could be displayed or the 
peak values of the response could be retained as an estimate of the 
bearing angle for the source(s) sppearing in eigenvector Mj. 

With regard to storage requirements for implementing this proc - 
essor, consider Eqs. (66) and (70). The first(i- 1) eigenvectors must 
be stored for each \,   algorithm. In addition,  a set of update storage 
registers must be available for the H^n) vectors. Note, however, that 
neither is there a requirement to store a complete estimate of the cor- 
relation matrix R nor is there a necessity to call a computer subroutine 
for computing the desired eigenvalues and vectors. For arrays with a 
large number of sensors and a broad spectrum of interest,  these two 
computational factors are of considerable importance from an imple- 
mentation standpoint.  This is particularly true if the desired number 
of eigenpairs (M) is much less than the number of sensors in the array 
(K). 

17 



A  verification of the convergence of the X,   algorithm can be ob- 
tained if the time-averaged array processor output power converges 
to the maximum eigenvalue (\i).  An estimate of this maximum eigen- 
value is computed by estimating the correlation matrix and then by 
performing an eigenvalue decomposition.   An additional verification 
of convergence is obtained by computing the eigenvector correspond- 
ing to X., by means of an eigenvector subroutine and then by employing 
this vector to specify the array bearing-response pattern. The result- 
ant pattern should correspond to  that obtained when the adaptive \, 
algorithm approach is used.   Examples of the above-mentioned veri- 
fications follow. 

The  X.,   algorithm given by Eq.   (66) is employed to locate simul- 
taneously three nonrandom,  single-frequency energy sources of ini- 
tially unknown angular positions with respect to the longitudinal  axis 
of a 24-element linear array.  (See Fig.  3. ) Uncorrelated noise is in- 
serted at each sensor of the adaptive array. These sensors are spaced 
one half a wavelength apart. The filter vector  £1,(0) is initialized with 
weights that give an omnidirectional sensitivity pattern,  i.e.,   equal 
sensitivity in all directions,   so as  not to initially bias  the adaptive 
array ir a particular direction.   The sources located by the  adaptive 
array processor are spatially stationary and exhibit S/N of -12,   -3, 
and -3. 6 dB for sources Si, S2,  and S3,   respectively. 

Figure 7 gives the  single frequency sensitivity patterns for the 
adaptive and maximum eigenvalue weight vectors. The two independ- 
ently obtained sensitivity patterns are in close agreement. Figure 8 
gives the adaptive processor's "learning" curve, which is^the time- 
averaged output power of the adaptive array processor versus number 
of filter adaptations. An independent calculation of the maximum ei- 
genvalue from an estimate of the correlation matrix R is  in close 
agreement with the adaptive array processor output power subsequent 
to convergence.   This comparison is given by 

10 log A, = 13.5« dB    and 

limit 

lY^n) I    ■ 13.60 dB 
n-»<» 

where the overbar indicates time averaging. For this example, 10,000 
iterations of Eq.  (66) were implemented and a value of   \x   equal  to 
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BEARING-RESPONSE PATTERNS 

 AOAPTIVI  K\ 
— ESTIMATED k\ 

SOURCE LOCATION yN(dl) 
SI «»* ^.M.ö1 

74» -3.0 
S3 -3.4 

72 «0 IM 
SEARING ANGLE (dag) 

126 144 162 IK    • 

Fig. 7.  Adaptive A. Aigorichm and Maiinum Eigenvalue (Vector) Estiniaed 
Bearing-Reiponie Pattem« 

0.0001 was used. Note that the approximate relative source power 
levels can be determined by considering the magnitude of the lobe 
formed in the direction of each source. 

Another example  of the adaptive source-location processor in- 
volves four nonrandom, signal-frequency, moving sources.  The same 
line array as in the examples on page 11 is employed. The total spread 
in S/N is 20 dB. Identification of the lowest (S/N) source track is still 
possible,  as indicated by Fig.  9.  The total processor display time is 
T = 60 seconds for 10,000 iterations.   A /naximum angular velocity 
rate for source Si of 4.5* per second was  used.   For  this  example, 
M. was   0.0005.   This value of |x  is necessarily larger than in the ex- 
ample given above  since the processor  had to adapt quite rapidly to 
follow the moving sources. 
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DISCUSSION 

The previous sections have established the background of and pro- 
posed an iterative adaptive technique for defining a multiple wavefront 
spat4ai field in terms of a series of eigenvector bearing responses. An 
advantage of this type of spatial array processing over conventional 
time delay-and-sum beamforming lies in the fact that the eigenvector 
bearing response to a particular source that is uncorrelated with other 
sources in the field is invariant with respect to the relative S/N levels 
for the other sources in the environment. This invariance might also 
be referred to as a spatial null steering capability for estimating the 
bearing angle of one source in the presence of interfering sources.2" 
This null steering effect is observed because of the orthonormality 
of eigenvectors containing directional information on resolvable wave- 
fronts with statistically uncorrelated complex envelopes. 

Another factor in support of this approach is that the number of 
multichannel filters, such as in Fig. 1, is equal to the number of un- 
correlated, resolvable sources that are to be located, rather than the 
number of directions sampled in the area of the spatial field searched 
by the array. This would be the case if an optimum, i. e., maximum- 
likelihood, multisource localisation, scheme were implemented. Such 
a maximum-likelihood processor for estimating the envelope of a 
wavefront with direction vector C would be 

where   A  is a scalar given by 

A-   (g**'"?)'1 (76) 

- n^r»!)" (77) 

(See, for example.  Reference 28.) 
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Recalling Eqs.  (18) and (23) yields 
• T 

(78) R- - M A'1 M'T 

■ Sr Mjä'T • (79) 
I» 1    ' 

Substituting Eq. (79) into Eq. (75) gives 

(80) ti« Um." A 

where 

«.-*!£•• (81) 

Suppose,  that the jth eigenvector (M,) has the property 

{1,1-1 

0, i -j 

then 

•ML 

(82) 

(83) 

for uncorrelated wavefront envelopes. Thus, the maximum-likelihood 
processor is identical to the jth eigenvector processor for process- 
ing a wavefront with directional delay vector 

I-il- (84) 

The importance of this result is that if the eigenvector M,  containing 
wavefront directional information I (Eq. (84)) were known, as in the 
method proposed in this report,  then the optimum processor could be 
specified immediately in the form of Fig.   1,  rather than by implement- 
ing a matrix filter-beamformer as indicated by Eq. (75). 

Implicit in a maximum-likelihood array processor, as convention- 
ally utilised, is an assumption of planar-source generated wavefronts 
emanating from each spatial search direction. For a physically large, 
rigid array located in an environment with either curved wavefronts 
or propagation velocity gradients in the vicinity of the array, the 
assumption of planar wavefronts could, of course, be troublesome. 
For nonrigid arrays,   relative movement of sensors thatcan not be as- 
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certained degrades both conventional and optimal coherent summa- 
tion for beam formation. No such plane-wave assumption, however, 
is Inherent in the eigenvector decomposition approach to multiple 
sources location. 

A discussion of the numerical accuracy and related probable limi- 
tations of the K|   algorithm (Eq. (66)) is appropriate. Notice that the 
estimate of the gradient adjustment term (Eq.  (67)) for estimating the 
ith eigenvalue and associated eigenvector depends on the estimates of 
the (i- 1) larger eigenvalues and associated vectors. Since this gradient 
estimate does depend on these eigenpair  estimates,  it is anticipated 
that the higher the V,   index the greater the   \,   and M,   estimator 
variances.  This suspected cumulative error effect can be reduced by 
decreasing the gradient step-sise factor   |i   in Eq. (66), thereby de- 
creasing the M,   estimator variance.  However,  this approach would 
have to be balanced with a consideration of the  stationarity of the 
sampled data statistics. This is because p must also be large enough 
to allow the algorithms to follow possible time variations in the input 
statistics. Nonstationarities of this sort, for example,   would result 
from sources with either angular velocity or time-varying spectra. 

Finally, all previous considerations have dealt with implementing 
the k|   algorithm at a single, discrete frequency. One potential broad- 
band system would consist of eigenvector processors operating in 
parallel, one for each frequency. The number of narrow-frequency 
bins of interest would be L. Such a system is illustrated in Fig.   10. 
The time-sampled sequence   |X)a|   from the ith sensor would first be 
processed by a discrete frequency transform (DFT) or equivalent 
contiguous narrowband filter bank. The discrete frequency outputs 
from each sensor DFT are then grouped to form the single frequency 
( f g) vector X(n),    « ■ 1,2,...,  L, at the filter update instant ta.  If 
M resolvable wavefronts (or eigenvectors) are to be detected,   then 
M number of \i   algorithms are implemented at each frequency.  The 
bearing angle for M wavefronts might then be detected by searching 
for the peak (or peaks) of the bearing response (Eq.  (41)) weighted by 
the eigenvalue for the ith wavefront at the discrete frequency fg. This 
source-bearing selection procedure could be implemented by, first, 
estimating the broadband bearing angle 6,   with the expression 

L        K 

Bid) - y^y^Vlg) B^fg. 6) , (85) 

and then choosing the M most prominant bearing angles for \ (f «) display. 
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